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TWO-DIMENSIONAL THEORY OF ELASTICITY
FOR FINITE DEFORMATIONS

By J. E. ADKINS, British Rubber Producers’ Research Association, Welwyn Garden City, Herts
A. E. GREEN, The University of Durham, King’s College, Newcastle upon Tyne
AND G. C. NICHOLAS, The University of Durham, King’s College, Newcastle upon Tyne

(Communicated by G. R. Goldsbrough, F.R.S.—Received 12 May 1954)
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A general theory of plane stress, valid for large elastic deformations of isotropic materials, is
developed using a general system of co-ordinates. No restriction is imposed upon the form of the
strain-energy function in the formulation of the basic theory, which follows similar lines to the
treatment by Adkins, Green & Shield (1953) of finite plane strain. The reduction of the equations
to two-dimensional form subsequent to the assumption of plane stress enables the theory to be
presented in complex variable notation. '

A method of successive approximation is evolved, similar to that developed for problems in plane
strain, which may be applied when exact solutions are not readily obtainable. The stress and
displacement functions are expressed in terms of complex potential functions, and in the present
paper the approximation process is terminated when the second-order terms have been obtained.
The theory is formulated initially in terms of a complex co-ordinate system related to points in the
deformed body, and the corresponding results for complex co-ordinates in the undeformed body
are then obtained by a simple change of independent variable. Approximation methods are also
applied to compressible materials in plane strain, and it is shown that the second-order terms for
plane stress and plane strain can be expressed in similar forms. This leads to a general formulation
of the second-order theory for two-dimensional problems, the results for plane stress or plane strain
being derived by introducing the appropriate constants into the expressions thus obtained.

THE ROYAL A
SOCIETY /3

1. INTRODUCTION

The non-linearity of the differential equations which arise in formulating the mathematical
theory of elasticity for large deformations has so far restricted the range of problems which
have received satisfactory treatment to those in which marked simplifying features can be
introduced. For example, in the problems of torsion, shear and flexure solved by Rivlin
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280  J. E. ADKINS, A. E. GREEN AND G. C. NICHOLAS ON THE

(1948, 19494a,b,) for incompressible materials, and the inflation of a spherical shell
examined by Green & Shield (1950), the restriction upon the form of deformation is such
that, with the appropriate choice of co-ordinate system, the resulting equations can be
solved quite generally for any form of strain-energy function. In other cases, as, for instance,
in the analysis of the shear of a cylindrical annulus given by Rivlin (19495), and in the
generalizations of this problem examined by Adkins (1954), solutions have been obtained
by assuming in addition a simplified form of strain-energy function, such as that postulated
by Mooney (1940) for rubberlike materials.

It is evident that any general restriction upon the form of deformation is likely to produce
some simplification in the form of the resulting equations. Thus if a problem can be reduced
to two-dimensional form, some measure of simplicity will be achieved owing to the reduction
of the number of dependent and independent variables which need to be considered, and
into this category come the practically important problems of plane stress and plane strain.

The general theory of plane strain for large elastic deformations of isotropic materials has
already been formulated by Adkins, Green & Shield (1953). In the present paper the
corresponding theory is developed for plane stress. The undeformed body is assumed to
consist of a thin plane uniform plate of isotropic elastic material which is stretched by forces
in its plane so that it remains plane after deformation. When no forces act on the major
surfaces of the plate, it is assumed, as in the classical theory of plane stress, that the principal
stress component acting normally to the middle plane of the plate vanishes everywhere.
The deformation and the stress resultants at any point are then expressed approximately
as functions of position on the middle surface of the plate. Similar methods have been
employed by Rivlin & Thomas (1951), and by Adkins & Rivlin (1952) in dealing with large
deformations of thin sheets of incompressible materials, but in the problems there con-
sidered the resulting equations have been simplified by symmetry considerations.

In developing the general theory of plane stress, the stress resultants are expressed in terms
of an Airy stress function ¢ chosen to satisfy the equations of equilibrium, and the work of
§§3 and 4 is similar to that of Green & Zerna (1954) on the classical theory of thin plates.
The resulting equations obtained in §§5 and 6 bear a formal resemblance to the corre-
sponding equations for finite plane strain superposed on a uniform finite extension obtained
by Adkins ef al. (1953), but an additional unknown variable is introduced owing to the
variation of thickness throughout the deformed plate.

For unsymmetrical problems, where exact solutions are not readily obtainable by
orthodox methods of approach, second-order solutions, valid for a limited range of deforma-
tion, may be obtained by approximation methods. Some simple deformations of com-
pressible materials have been investigated by such methods by Murnaghan (1937, 1951)
and general formulations of the second-order theory have been given by Rivlin (1953) and
by Green & Spratt (1954). Torsion problems have been similarly examined by a number of
workers including Green & Shield (1951), and Green & Wilkes (1953). The method adopted
in the'present paper is similar to that employed by Adkins et al. (1953) for finite plane strain.
It is assumed that the stress and displacement functions can be expressed as functions of
a characteristic real parameter ¢, the choice of which depends upon the problem under

consideration. When the equations governing the deformation are expanded in terms of this
parameter, the coeflicients of each successive power of ¢ furnish a set of relations for the
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TWO-DIMENSIONAL THEORY OF ELASTICITY 281

determination of the corresponding terms in the expansions for the stress and displacement
functions. In the present paper attention is limited to terms of the first and second orders.

The reduction of the theory to two-dimensional form makes possible a formulation in
complex variable notation similar to that of the classical theory of elasticity (see, for example,
Muskhelishvili 1953 ; Green & Zerna 1954). Explicit expressions for the stress and displace-
ment functions can then be obtained in terms of complex potential functions, which are
chosen to satisfy the boundary conditions in a given problem, two additional functions being
introduced for each succeeding stage of the approximation process. The resulting expres-
sions are similar in form to those derived by Adkins ez al. in developing the theory of finite
plane strain for incompressible materials, but with different values for the constant
coeflicients. In considering finite deformations, the complex co-ordinate system may be
related either to points in the deformed body or to points in the undeformed body, the
choice for any particular problem depending upon the nature of the boundary conditions.
For convenience, the theory is developed in terms of complex co-ordinates in the deformed
body, the corresponding formulae for co-ordinates in the undeformed body being obtained
by a simple change of independent variable.

The similarity of the results for plane stress to those obtained for incompressible materials
in plane strain suggests naturally the possibility of formulating in more general terms the
second-order theory for two-dimensional problems. The approximate theory for compressible
materials in plane strain is therefore developed in § 9; in the final section of the paper the
results previously obtained are combined to yield general formulae for the determination of
second-order solutions of two-dimensional problems in elasticity. These formulae express
the stress and displacement functions in terms of complex potential functions, but the
constant coefficients are left arbitrary. The complex potential functions may then be chosen,
using these equations, to satisfy a prescribed set of boundary conditions over given contours,
and the stress and displacement components evaluated in general terms. The results for
plane stress or plane strain can then be obtained as special cases of the more general solution
by choosing the appropriate values for the constants. Moreover, by a suitable choice of
constants, the contours over which the boundary conditions are specified can form the
boundaries either of the deformed body or of the undeformed body. Since the results for an
incompressible material can be obtained by a limiting process from those for a compressible
material, the single general solution can be made to yield, as special cases, the results for
eight associated problems.

From a detailed examination of the equations for plane stress and plane strain, it is shown
that the constants in the general solution may be expressed as functions of the elastic
constants of the material together with two additional parameters. One of these parameters
is employed to differentiate between plane stress and plane strain, while the other is chosen
to distinguish between co-ordinates in the undeformed body and in the deformed body.

2. NOTATION AND FORMULAE

With slight modifications* we use the notation of Green & Zerna (1950) and Green
& Shield (1950, 1951). The points of an unstrained and unstressed body at rest at time ¢ = 0
are defined by a system of rectangular Cartesian co-ordinates x; or by a general curvilinear

* See Theoretical elasticity by Green & Zerna (1954).

35-2
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system of co-ordinates §,. The points of the deformed body may also be defined by a set of
rectangular Cartesian co-ordinates y;, and in the present paper we shall take the x,-axes and
y;-axes to coincide. The curvilinear co-ordinates #; move with the body as it is deformed and
form a curvilinear system in the strained body at time ¢ The covariant and contravariant
metric tensors for the co-ordinate system 0, in the unstrained body are denoted by g;; and
g respectively, and for the co-ordinate system in the strained body, at time ¢, the corre-
sponding metric tensors are G;; and G respectively. We write

g = gz‘j" G = 'Gij l5 : (2-1)

latin indices taking the values 1, 2, 3.

For a homogeneous, isotropic, elastic material the strain-energy function W, measured
per unit volume of the unstrained body, may be regarded as a function of three strain
invariants [, 1, I; given by

I, = gy Gija I, = Isgz'j GY, L = Glg, (2:2)

so that W= W, L,1). (23)

The contravariant stress tensor 7¢, measured per unit area of the strained body, and
referred to co-ordinates in the strained body may be expressed in the form

7 = gid+ B W + Gip, (2-4)

2 oW 2 IW ow R

’where (D:jj;?j;’ T:ﬁ;@’ /7:2~/13§j3“’ (2:5)
Bi = gijll —*girgst,.s = :; eirm ijgrs Gmn’ (26)

and e”™ is equal to +1 or —1 according as ¢, 7, m is an even or odd permutation of 1, 2, 3,

and equal to 0 otherwise.
If t is the stress vector associated with a surface in the deformed body whose unit normal

u is given by e (27)

then t= L uw,1G; = > ut, /JG* (2-8)
. JG i J : 1IN 5

where - T, = J(GGH) t, = /(G) 19 G,. (2-9)

G,, G/ are the covariant and contravariant base vectors in the deformed body, and t;
denotes the stress vector associated with the surface §;, = constant.
With this notation the equations of equilibrium in the absence of body forces may be

written in the alternative forms
Ti,i = O, (2.10)

il =0, (211)

where in (2-10) the comma denotes partial differentiation with respect to ¢, and in (2-11)
the double line denotes covariant differentiation with respect to the deformed body, that is,
with respect to §; and the metric tensor components G;;, GY.
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PLANE STRESS

3. STRESS RESULTANTS AND LOADS

In this section the development of the theory is similar to that given by Green & Zerna
(1954) for the classical theory of plates. We suppose the unstrained body to be a plate of
homogeneous isotropic elastic material bounded by the plane surfaces x5 = -+ A,, where 4 is
a constant, although the results of §§3, 4 are also valid for an aeolotropic plate which has
symmetry about the plane x; = 0. This plate undergoes a finite deformation symmetrical
about the middle plane x; = 0, which thus becomes the middle plane y; = 0 in the deformed
state. The major surfaces of the plate after deformation are given by y; = -4, where £ is,
in general, a function of ¥, y,. We choose the curvilinear co-ordinate system 6, so that

Y5 =05 Yo = Yu(01, 05 2); (3:1)
greek indices taking the values 1, 2. It follows that
4, 4 O AU, 4120 0
Gj= |4 4y 0], GVi=|A42 4%, 0], G=A4, (3-2)
0, 0, 1 0, 0, 1
with A= |4, A*A,,=70% (3-3)

where 4,;, A*F are the covariant and contravariant metric tensors associated with co-
ordinates #, in the middle plane y; = 0 of the deformed plate, and J% is the Kronecker delta.

The force acting on an element of area of the co-ordinate surface ¢, = constant in the
deformed body is T, d§2d6?, and the length of the corresponding line element of the middle

plane y; = 0 is J(dyy) d62 = J(AAM) dg2.

Similar considerations apply for the other co-ordinate surface ¢, = constant. The stress
across either of the surfaces #, = constant may therefore be replaced by a physical stress
resultant n_, measured per unit length of the curve f, = constant in the plane y; = 0, where

N, (" ‘
noc - W ’ Noc - J_hTocdyi’n (3 4)

and we recall that % is a function of y,,y, or 6,,0,. Since the deformation is symmetrical

about y,; = 0, the corresponding stress couples are zero. From (2-9)

T, =/(4) G,

so that from (3-4) we may write

n, /4% = nG,+¢*G;, N, = NG, +Q*G,, (8-5)

where Ner =poe J4, Q* = q*/A, (3-6)
h h

and : nee zf %, dy,, ¢* =f 73 dy,. (37)
~h ~h

Since the deformation, and consequently the stress distribution, is symmetrical about the
plane y; = 0, it follows that ¢* = 0.
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The stress resultant n per unit length of a line drawn in the middle plane y; = 0 of the
deformed plate, whose unit normal in that plane is

u = u, G,
is given by n = fh tdys,, (3-8)
~h
so that, from (2-8), (3-4) and (3-5)
2
n~JAf T, dy, JA = S0, 4% — 1, (1G4 ¢°Gy). (3-9)

The functions defined in (3-7) are (plane) surface tensors. The components of the
symmetrical contravariant tensor n*? and the components of the contravariant tensor ¢*
are called stress resultants and shearing forces respectively. Mixed and covariant tensors
Mgy Ny ¢, may be formed with the help of the metric tensors 4,5, 4*/. In order to find the
physical components of n, we express these vectors in terms of unit base vectors along the
co-ordinate curves ¢, = constant. The physical stress resultants and shearing forces are
denoted by 1,4, 4.,y respectively, the bracket indicating that these quantities are not tensors.
Thus we have G G

N, = Ny TR 75+ 4w G (3-10)
JAn VA3,

and comparison of this with (3-5) yields
Npy = 18 J(Agp/A**)y  Quuy = %S A% (3-11)

We now consider the external forces acting on the major surfaces of the deformed plate.
The covariant components %, of the unit normal to the surfaces y; = +-£(6,, 6,) referred to
the base vectors G’ are

— _3% 0?3 ) . .
(u17u27 u3) - k( 5‘0717 aﬂ H 1 (3 12)
where, remembering (3-2)
k= (4%h ,h ,+1)74, (3-13)
and at these surfaces, from (2-8),
T, )
t= JA JA (Ts Tays a) (3-14)

The stress vector t is measured per unit area of the surfaces y; = -+ 4. But
dS = (uz!) dS; = (JA/k) do*d6?,

where dS, dS; are corresponding elements of one of the major surfaces of the plate and of the
middle plane respectively. We can thus replace t by t/k measured per unit area of the
middle plane y, = 0. We now replace the surface forces by a resultant force 1 measured per
unit area of this plane, where

1= [t/k],,—\— [t/k]yg——h [t1%4/k- (3-15)

If we introduce the vector L where

L=1/4, (3-16)
then, from (3-14), L = (JAK) [t]%, = [Ts—T,ys ol"s (3:17)
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Remembering (2-9) we may now write 1, L in the forms
= *G,+1G;, L = L*G_ +LGs,, (3-18)
h L* = /A, L=1,/A,
where N J } (3-19)
e -—’r“/”y& ﬁ]'iin [=[r3 ”‘73’9%, ﬂ]’iir

These relations may be simplified by observing that since the deformation is symmetrical
about the plane y; = 0, / and L are zero. Thus (3-18) and (3-19) yield

1=[G, L=L*G,
(3-20)
[733_73@3,/9]'1;; = 0.
4. EQUATIONS OF EQUILIBRIUM: AIRY’S STRESS FUNCTION
If we integrate (2:10) through the thickness of the plate we obtain
h
| Tendyr [Ty, =0 (+1)
—h
But, from (3:4), a (h h
( ) Noc,oc = Wf_hTocdyS = j_hToc,ocd!/3+ [Tocy3,oc]lih9
so that (4-1) becomes N, o +[T5—Tyys ]2 =0,
or N, .,+L=0, (4-2)
if we use (3:17). Combining this with (3-5), (3-6), (3-19) and (3-20) we have
w41 =0, (43)

where the double line denotes covariant differentiation with respect to the plane variables
0, in the deformed body, using Christoffel symbols formed from the metric tensors 4,,,, 4%/.
Since ¢* and / are zero, the third equation of equilibrium is automatically satisfied.

We shall, from now on, assume that the major surfaces of the plate are free from applied
forces so that t = 0 when y; = -+ /. Then, from (3:16) and (3-17), we see that L and 1 are
zero and, remembering (3-20), the equations of equilibrium (4-2), (4-3) reduce to

N

w,a 0 or nf Hoc = 0. (4‘4)
Equatiohs (4-4) and (8-5), with ¢* = 0, are similar in form to the corresponding equations
for T, and 7%/ obtained by Adkins ¢z al. (1953) for plane strain. The results there obtained
may therefore be applied to express the stress resultants and applied forces and couples in

terms of an Airy stress function ¢. Thus

Ny = )51, s
and nl = e*1ePPg ||,
or D llup = €aybp,m"" = (A]) (o6ay) (o655) W75 (4-6)
where x is a vector in the plane y; = 0, ¢ is a scalar invariant function of ¢, and 6,

o€ Ja = upla = e JA = e,5]JA = €,p5, (4:7)

and €rp €= Op.
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The double line again indicates covariant differentiation with respect to the plane y; = 0
of the deformed body, the order of differentiation being immaterial since the Riemann-
Christoffel tensor in the plane vanishes.

Y u

P —»—nds

Ficure 1

Let AP be an arc of a curve 4B in the middle plane y; = 0 of the deformed body (figure 1).
"By an analysis similar to that used for plane strain we may obtain the resultant force across
a surface in the deformed body formed by normals to y; = 0 along AB. Denoting an
element of AP by ds and making use of (3-9) and (4-5), we obtain for the total force F
exerted by the region 1 on the region 2, across the arc 4P,

P
F— ~f nds = x = ey G, (4-8)
A

apart from an arbitrary constant vector which may be absorbed into x without loss of
generality. Similarly, the total moment about the ys-axis of the forces exerted by the
region 1 on the region 2 is given by

M= ["[Rax, 15 & = (R .—4) G, (49)

apart from an arbitrary constant vector which may again be absorbed into ¢G* without

affecting the stresses. In (4-9)
R = R*G, = R,G* (4-10)

is the position vector of a point on the curve 4B with respect to the origin of the y;-axes.
Equation (4-9) thus represents a couple of magnitude

M=R¢ ,—¢ (4-11)
about the y;-axis.
If AB is a boundary curve of the plate which is entirely free from applied forces, (4-8) and
(4-11) yield the conditions Y« =0

or ¢,l = 0, ¢’2 - O, (4'12)
at all points of 4B.
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5. STRESS-STRAIN RELATIONS

In the equations so far derived, no assumptions have been made regarding the thickness
of the plate. We now confine our attention to plates which are thin, and write approximately

X, = %,(01,05), x5 =ys/A = 05/A, (5-1)

where 1 is a scalar invariant function of 8,,6,. The metric tensors 8> &7 now take the

approximate forms
PP gocﬂ = aaﬂ) 833 = 1//12)

gocﬁ — azx/)” g33 — /12, (5.2)
g=al? a= ]aaﬂl,
where a,;, a*/ are the covariant and contravariant metric tensors associated with curvilinear
co-ordinates ¢, in the plane x; = 0 of the undeformed body.
From (2-2), (3-2) and (5-2) the strain invariants are given by
L= 2+atd,,
L, = 2*(Afa) a, 3 A*F - A/a, (5-3)
I, = A%4/a,
approximately. Also, remembering (4-7), we have a,,4*#A = a*f4 ,,a and hence

L— 2L, 4T, — 2 = 0. (5-4)

These results bear a formal resemblance to the corresponding relations obtained by Adkins
et al. (1953) for plane strain, but A is no longer constant.
The tensor BY may be calculated from (2:6), (3-2) and (5-2), and is approximately
Be# = Q2a%F + AA*F|a,
/ a l ( 5 5)
B3 = 22(I,—12). |

From (2-4), (3-2), (5-2) and (5'5) we obtain for the components of the stress tensor

18— (O-+ 1) a4 (¥Aat ) Aaﬂ,}

‘6
738 = 22+ A2(I,—2) W+, (5:6)

Since the major surfaces of the plate are free from applied forces, from (3-15) and (3-19)
we have, at y; = 4/
’ Ys + s T“s—T“ﬂy3,ﬂ —_ 0, ,,-33_4-3061/3’0C — 0,
from which, by eliminating 7*3, we obtain
733_7“/}%,@?3,;9 =0. (5:7)

If the thickness of the plate is sufficiently small and if 45 , is of the same order of magnitude as
k, it is evident from (5-7) that at y; = + /£, 7% is small compared with the stresses 7%/. We
therefore assume 733 to be negligible throughout the plate, and from the last of equations
(5-6) we then have approximately

2O 02(L—2) Wt p = 0. (5-8)

VoL. 247. A. 36
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Eliminating p between (5-8) and the first equation of (5:6) we obtain
78 = (O+22Y) a*f +{(A)a+ At —22) ¥ — 22D} A5, (59,

From (5-3) it is evident that the invariants, and hence also ® and W, are independent of
ys3 (= 0,). Equation (3-7) thus yields

nb = 2k = 2Ahy TP, (5-10)
From (4-6), (5-9) and (5-10) G llop = Ha,z+ KA, (5-11)

where, remembering (2-5) and (5-3), we have

4 VI amw)
H = 2h 0% {0+ 22} = 4 {M BT az}
A
K- zho/l{(;+/l4—/121,) ‘I"--—AZ(I)} [ (512)
_ A (2OW  (ep _yu_B\IW
= ”0\/13{* F(en—v-g) 312}' J
For an incompressible material I, = 22A/a - 1, (5-13)

and W becomes a function of [, and I, only. Equations (5-12) then reduce to

4h, ((?W (?W)

_ 2
H=—2 5 ™51

514
K — —abh A{A?‘W (121 - )‘W} o
il x) a1,

For compressible materials it is convenient to express A and K in terms of three different,
mutually independent invariants J,, J,, J; defined by
‘]1 - Il - 3:
Jy = L—21,+3, (5:15)
Jy=L—L+1—1.
The invariants J;, J,, J; have been employed by Rivlin (1953) and have the advantage that
for small deformations they are of the first, second and third orders of smallness respectively.

From (5-15) we have W AW oW W
oL T aT 297, Ty
DA e (519
ow _ow
FTAN N A )
Equations (5-4) and (5-8) then yield
J+(l—/12)J+(1—~AZ)2J'+(1—~/12)3=O, (5:17)

and AZZE.V+/12(J+1 o +{(142 (J+1— 112)+J+J3}£::O, (518)
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respectively. Expressions corresponding to (5-12) may be derived for H and K, but in place

of (5-9) we now make use of the first of (5-6) from which p has not been eliminated. Thus we
obtain

H = 4h “/AI {aJ— + 2= )ZZ"(AZ_l)ﬁ}’ (5-19)
I ow
K_4h\/,l{(9j+(/l )(?J;;}

For a compressible material these expressions are equivalent to (5:12) by virtue of (5-16),
(5-17) and (5-18).
6. FORMULATION IN TERMS OF COMPLEX VARIABLES

With the simplifying assumptions of the previous section, and the consequent reduction
of the theory to two-dimensional form, it becomes possible to employ complex variable
techniques. The procedure followed in this and subsequent sections is therefore similar to
that used by Adkins ef al. (1953) in the treatment of finite plane strain. The presence of the
parameter A, however, which is now a function of the co-ordinates, renders the equations
obtained more complicated in form.

For finite deformations, the complex co- -ordinate reference frame may be related to points
in the undeformed body or in the deformed body, and the relevant equations for either
co-ordinate system may be derived by an appropriate choice for the moving system of
co-ordinates ¢, in the relations of the preceding sections. Since the resulting expressions
are simpler in form for complex co-ordinates in the deformed body, we shall consider this
case first, and from the results thus obtained, derive the corresponding formulae for complex
co-ordinates in the undeformed body by a simple change of independent variable.

We thus introduce complex co-ordinates ({, {), (z,z) in the undeformed body and in the
deformed body respectively by means of the relations

{=ux+ixy, (= xl—ix23}
z=y iy Z=Y 1Yy

If the components of displacement referred to the x,-axes are (,v), the complex displace-

ment function D is defined by p —y 13y, D =u—in, (6-2)

(6:1)

and since the x,-axes and y,-axes coincide, we have
z={(+D, z={C+D. (6-3)
If we denote covariant and contravariant base vectors in the system of complex co-ordinates
(z,z) by A, and A* respectively, the position vector R of a point of the deformed body,
which is given by (4-10), may be written
R =2z*A, =z, A~
b= g—y‘?yﬁ%{yz = Y1 +iy, = 2,

0z 0z
2=ty e =T =%

By tensor transformations

so that the complex co-ordinates (z,z) may be denoted by z=.
We now take the moving system of co-ordinates #, to coincide with the co-ordinates

(z,z) so that 0,=z, 0,=2z. (6-4)
36-2


http://rsta.royalsocietypublishing.org/

A A

L

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

290 J. E. ADKINS, A. E. GREEN AND G. C. NICHOLAS ON THE

The metric tensors 4,4, A% then have the values

Ap =14, Ay =4p»p=0, J4d=1i,
A2 =2 AN = 422 — 0, } (6:5)
Remembering (5-2), the strain invariants (5-3) reduce to
I, = —ayyla—1/(4a), (66)
3 = _/12/(4‘1):
where, from (5-1), (5-2), (6-1), (6-3) and (6-4), we have
_0(xpyxp) 1 dD _dD dDJD 4iDIDy  id )
J“‘a(el,@)“z(l FER R 5:??2)‘%1; (6:7)

= ox, dx,\2 0D (0D
s (- 22

;_1{1 0D 9D DD aDaD}

EER ) L PR A P A - B (6-8)
_ A, D
o Lz 0z

all =42 = qy,/a, a'?2 =—ay,/a.

A bar over a function indicates the complex conjugate of that function, and we have used
(6-7) to simplify a,,. Introducing these results into (6-6) and using (5-15) we obtain

Jy = deg e A2+2‘/A +4/_{§%’?‘;—D_3 |
Jg=3—2/12—(a2—2)‘—‘6112—11&
=3— 2A2+§2+2( 2){JI3+2/{23D‘3£}» (6-9)
e e )
I
If the body is incompressible so that /; = 1, we have from (6-6), (6:7) and (68)
Ja =14/2,
or 1-1=90,9D_0DdD DD (610)
and a12=%/1+%£%1;,
I =22 +i+;%€%€ (6-11)
L = A2+2A+4‘?ZD.
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Since the components (6-5) of the metric tensor of the deformed body are constants, the
corresponding Christoffel symbols are zero and therefore covariant differentiation in the
deformed body reduces to partial differentiation. The equations of equilibrium (5-11) thus
reduce to

92
3¢; Halla
(6-12)
9°¢ 1
9207 Hay+ 3K,

together with the complex conjugate of the first of these equations.
For a compressible material H and K are given by (5:19), and (6-12) then becomes

78 (L5) O s B Y00,

a2¢ . aW Jls 2 aW .'\_/é__ a_Vg > .
ozoz = 2 {aJ (- )aJ -1 (5 l)an} (6:13)
VL W _ 2 1yIW\3DID
+4’h(/1 ){ 97 T =25 — (=) 0J3} 7z 9z )
Also, from (6-9) and (5-18), we have
UL JL 2w aW oW\aDoD .
aJ ”*“2( A )aJ () a7 T4 (aJ aJ) a0 (614

Remembering (6-7) and (6-9), the relations (6-13) and (6-14) yield four equations for the
determination of ¢, D, D and A.

The corresponding equations for an incompressible material are obtained by introducing
(5-14) and (6-11) into (6+12). Thus
% ( Pt (?W) oD (&‘D 1)
22~ 1 \df, L, ) 9z \ 0z ’

% 5 (OW  10W 10W dW\dDJD
3295 = 2| (1~ “(azlﬂ az)”(m—g“%—zg)?fz“az}'

(6-15)

These equations, together with the incompressibility condition (6-10), are again sufficient
to determine ¢, D, D and A.

The theory may be formulated similarly in terms of complex co-ordinates in the un-
deformed body by choosing the moving system of co-ordinates 6, to coincide with the com-
plex co-ordinate system ({, {). Alternatively, by making use of (6:3) and (6:7) we may
change the independent variables in equations (6-9) to (6:15). Thus for a compressible

material we may write IS {(1 .\ a_D) 9 D }
0z JI aglag acag)’
d A( dDd dD\ 0
7= Ja st (o)

and for an incompressible material we may put J; = 1 in these expressions. The resulting

equations will not, however, be required for the approximate theory developed in §§7 to 10.

(6-16)
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Denoting the stress resultants referred to complex co-ordinates in the deformed body by

n*¥; we have from (4-5
. Y .
0z%’ 0z0z

Employing (6-3) and (6-1), we may now, by simple tensor transformations, obtain expres-
sions for the stress resultants referred to the complex co-ordinate system ({, {), or to the real
co-ordinate systems x,, y,, analogous to those obtained for the stress components in the
corresponding theory of finite plane strain.

Also, if the resultant force F across any arc AP of a curve in the deformed plate has com-
ponents (X, ¥) along the y,-, y,-axes respectively, then a simple tensor transformation gives

F= (X+iY)A,+(X—iY) A, = FA, + FA,, (6-18)
where A, A, are the covariant base vectors in the complex co-ordinate system (z, z). Then,
remembering (6-5), we may interpret (4-8) in complex co-ordinates to get

(6:17)

F= 21%%_5. (6-19)
Similarly, for the couple M about the origin we obtain from (4-11)
M=2%12% . (6:20)
From (6-19), or directly from (4:12), at all points of a boundary curve which is entirely free
from applied stress, we have 26
=0, (6-21)

together with the complex conjugate of this equation.

By introducing (6-16) into (6:17), (6-19), (6-20) and (6-21) we may readily obtain the
corresponding relations for complex co-ordinates (¢, {) in the undeformed body, but these
are not required for subsequent applications.

7. SUCCESSIVE APPROXIMATIONS: INCOMPRESSIBLE MATERIALS

The classical infinitesimal theory of plane stress is obtained by neglecting squares and
products of the displacement D and its derivatives with respect to z, z or {, { in the equations
of the previous section. Further approximations based on the classical theory may be
obtained by considering higher order terms in these relations. Taking co-ordinates (z, z)
in the deformed body we put

D = ¢{°D(z,2)}+e(1D(z,2)}+ ..., (7-1)

where ¢ is a characteristic real parameter in a given problem. Also, since A is the ratio of the
thickness of the plate after deformation to that before deformation we may write

A =1+4€e{PA(z,2)}+e*{A(2, 2)} + ... (7-2)
For incompressible materials we thus obtain from (6-11)
d°D9J D
— 2/g(0))2
Il—3+€ {3( /l) +4T az az }—I_-"? (7.3)
— 20021 49 P9 D
L—3+e3n)+45 00 |-
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In the present paper we shall confine our attention to terms of the first and second orders in
¢ in the expansion (7-1) for D, and to this degree of approximation the form of strain-energy
function suggested by Mooney (1940) is adequate. We may thus write

W = Cy(5,—3)+Cy(L,—3), (7:4)
so that C}, C, are the values of dW/d1,, dW |31, respectively at I, = I, = 3. Also we may put
¢ = "He{’¢(2,2) +€el¢(2,2) +...}, , (7-5)

where °H is a constant, which, for convenience, we shall choose to have the value 44,(C; + C,)
so that, from (5-14), H = °H when ¢ = 0.

Introducing the relations (7-1) to (7-5) into (6:10) and (6-15), and equating to zero the
coeflicients of ¢ in the resulting equations, we obtain

90D 99D
Pz Tz
2(%) 99D

3(2?) +_(9E— =0, ¢ (7'6)
9%(°%) 3%
2oz T 9

+0 =0,

=0.

Similarly the coefficients of ¢? in these equations yield
d'D 9D 9°D3d°D 4°DJ°D )
R L PR R PR A
0%(19) +0 D d°D (0 °D )

R ey Pl L ( (7:7)

P?('g) 31 _ 2°DID_,

2
2oz T o =% g i(l+a) ()%

where o = (C,—C,)/(C,+C,). Similar equations may be obtained from the coefficients of
higher powers of ¢ provided higher order terms than those given in (7-4) in the expansion
for the strain-energy function W are taken into account. The first approximation corre-
sponds to the classical theory, and the equations for this may be integrated in terms of
complex potential functions (z), w(z). Thus, from (7-6),

9(e2) — 20 (2)+2Q(2) +0(2) +5(2),
°D(z,2) = 3Q2) —2Q(2) —'(2), (7-8)
"U(z,2) =Y (2) + Q' (D)},

a prime indicating the derivative of a function with respect to its argument.
Eliminating A between the first and third of equations (7-7) we obtain

. 29D3°D D) D
320z 0z 0z PN T a
| — ¥(2043) {ZQ'(2) + " (2)}{zQ" (2) + 0" (2)}

—$(2¢—13) {[Q'(2) 12+ [Q'(2) 12— %(2¢+19) Q' (2) Q' (2), (7°9)

~3(1+a) (22
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if we make use of (7-8). Similarly, again using (7-8), the second of equations (7-7) becomes

P*('¢) 0 D = Lz (2) + 0" (2)} {(20—5) Q' (2) + (20+3) Q' (2) . (7-10)

0z2

This equation may be integrated to yield
T2+ 1D — §A(2) +§(2a—0) (R 1+ [ (D) v'(2) &
— fs(22+11) f @R 3) Q(2) B (@) to'(2) —30@))  (T11)

where A(Z) is an arbitrary function of Z and the additional terms in Z have been inserted to
simplify subsequent expressions. From (7-9) and (7-11) it follows that

SO s (o) 1 )9 )
T 3(2e48) {Q(2) [T (2) 19 () — 3] +O(2) [2 (2) o/ (2) — 302(2)]
() +0' (] [ () 3" (2)] - ()P 3 ()13,

and hence, by integration,

(Z%Z)zA(sz‘A"(Z)M'(Z) +7(62—7) Q(z) Q'(2)

+ (2a+3) {31, (z z) —1z[Q'(2)]%, (7-12)
Where [y(z,2) = {zQ"(2) +&"(2)} {ZQ (z) + ' (2) —~Q(z)}
HQ'(2) + Q' (2} (2) +5’(Z) $Q(2)}
== % +°Eai} oxd (7:13)

and ¢’ (Z)'is a further arbitrary function of zZ. By integration of (7-12) we may obtain an
expression for !¢, but this is not required in applications of the theory. From (7-11) and

(7-12) 1D(z,2) = 3A(z) —zA'(Z) — ¥ (2) — 4 (62— 17) Q(z) Q' (2)
~1(2a+3) Ay (2,2) +L(6a+1) 2{Q' (2) )2

—A(2a+11) f T (2)]2dz -+ 1(2¢—5) f V() (714)
where M (22) — (207(2) +5"(2)H2Q () 0/ (2) — §0(2)}
—{3Q'(2) - Q' (2)}{zQ'(2) +9' (2) — 5Q(2)}
(OD (f +9D a") oD. (7-15)

An expression for 'A(z, Z) in terms of complex potential functions may now be obtained, if
required, by introducing (7-14) and (7-8) into the first of equations (7-7).

For problems which are non-dislocational in character the complex potential functions
Q(2), w(z), A(z) and d(z) must be chosen so that the stress and displacement functions are
single-valued. It follows that °D, 1D, ...,%, 1A, ..., and all their derivatives with respect
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to z and z, and similarly the second and higher order derivatives of %3, !¢ ..., if they exist,
must be single-valued at interior points of the body. Thus from (7-8)

[X(2)]c=0, [0"(2)]c=0, 5[Q(2)]c=3[w'(2)]c (7-16)
and similarly from these relations, with (7-12) and (7-14), we may infer that
[A(2)]c=0, [120"(2)+(62—7)Q(2) Q' (2)]c =0,

[6A(z) —30'(2)]¢ (7-17)
- [ (22+11) f (Q(2)}2dz— (2a—5) f Q'(2) " (2) dz 4+ 1(6a—7) Q(2) ﬁ’(z)] ,

C

where in (7-16) and (7-17), [], denotes the change in value of the function inside the
brackets during a complete circuit of a contour C lying entirely within the deformed body. T
For some problems it is convenient to remove the integral terms from (7-14). Replacing

A(z) by A(2)-+s(2e+11) f Q' (2))12dz and 8'(2) by &(z) +4(2e—5) f ‘W(2)0"(2)dz in
(7-12) and (7-14) we obtain

PIED) L Ao+ )+ (2) + 2o(6e—T) Q2) T () |

+3(2¢+3) ['y(2,2) —5(182+19) 2{Q'(2)}?
(22 4-11) f (Q () dz+1(2e—5) f 0z a" () dz

1D(z,2z) = $A(z) —zN’ (z)— 3'(2) — 2 (6a—17) Q(2) ﬁ'(z)
+5(14a—3) Z{Q'(2) 2 —1(2a+3) A, (2, 2).

~

(7-18)

The conditions (7-17) for single-valued stress resultants and displacements now, however,

reduce to [A(2)]c=0, [120"(2)+(62—7) Q(z) A (2)]c = O,} (719)
[5A(z) —38"(2) — (62 —17) Q(z) Q' (2)]c = O.

The corresponding results for complex co-ordinates (¢, {) in the undeformed body may
readily be obtained by expanding the argument z in ¢(z,z), D(z,z) by means of (6-3). If
we express D in the form = e{"D' (&, O} +eX1D" (& O} + ... (7-20)

and introduce this eXpansion, together with (6-3), into (7-1) we obtain

D = oot y+e{D(6 ) +0'(6 0 W5 v n LB (ra

Comparing (7-20) and (7-21) and making use of (7-15) we thus have

D'(¢,0) =°D(4 D), }
1D’(§, C) = ID(é’a g) +A‘l(§) Z)’

1 The conditions (10-22) given by Adkins ef al. (1953) for plane strain, when the resultant force on the
contour is zero, are, of course, only true if the integral terms in the preceding equation (10-16) are single-
valued. This is the case for the examples considered in that paper.

(7-22)

Vor. 247. A. 37
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and similarly from (7-5) and (7-13) we may obtain

9°%(z,2) _ 9 (¢ Q)

aé?) %é@, (7:23)
Z, ) z

where I', ({, {), A, (¢, {) are obtained by replacing z,Z by ¢, {in (7-13) and (7-15) respectively.

The first-order stress and displacement functions °%({, {) and °D’({, {) are thus obtained

by replacing z, Z by {, {in (7-8). Also, combining the second of equations (7-22) and (7-23)
with (7-12) and (7-14) we obtain

a ! 7_ AN/ (F NA#Z O/ (7

P02 A+ D +5(D) + (67 AO T (D

+4(20—5) [y(6, O —4(2¢+3) QO
D(60) = 30 —~ N (Q) V(0 — 56— AO QD) | (724)

62+ 1) GO/ OF— (2t 10) [ QO

w]r—x

S Ee
~(20=5) [0 (6 D3 QO aT)
and similarly from (7-18) we have the alternative forms

PHEE A+ RO+ O +dlea-D AOQD

+30{2a+11)f [Q(O)]2d¢— (18a+19)§[ﬂ'(€)]}

| (7-25)
+ (22— 5) {-g«n( f Q0 }
ID'(§,8) = $A(0) — EA(D) — & (0) — (60— 17) Q(O) Q'(T)
+ 15 (140 —3) {Q' (O —1(2¢—5) A(4 D). J

The conditions for (7-24) and (7-25) to yield single-valued stress resultant and displacement
components now take the forms (7-17) and (7-19) respectively with ¢,  replacing z, Z.

Expressions for the stress components, and for the resultant force and couple acting on
a curve in the deformed body may now be obtained in terms of complex potential functions
by combining the expressions obtained in the present section for ), ¢, D and 1D with
(7-1), (7-5), (6:17), (6-19) and (6-20).

8. SUCCESSIVE APPROXIMATIONS : COMPRESSIBLE MATERIALS

Approximate solutions of equations (6:13) and (6-14) for compressible materials may be
obtained without difficulty in terms of complex potential functions by the methods of the
previous section. Assuming expansions of the forms (7:1) and (7-2) for D and A, we obtain

from (6-7) and (6-9) Jy = 6 O +e2(1J) +
Ty = () 4 .., (8:1)
J, = 0(e),
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where

0 0
sl 2P .

(?ID d'D 00D) +(0°ﬁ)2 d°Dd°D _9°DJ°D

‘Jl-2{ PRI = +1A}+2{( 3 Fr +3

5z 3 T3 e tCAn (82)

9D 99D\: 9°DID (30D 3§D
17 — 0
S (ﬁz+0z) % 0z +‘”( +3z)
d I D 9D
an J 511, ((}‘a +(?az>

3D D °D 9D\2 9°DAD 9°D3 D
e {a 5 (az+az)”‘az 7z Tz ez

Also, since W = W(J,, J,, J;) we may obtain from (8-1)
0
[ ] et [N VA

2w P%% PBW
21
Te { J[aJ aJ] + J[ﬁJ aJ:l O G :

where the suffix 0 indicates that the quantity inside the square brackets is evaluated at
J; = J, = J; = 0. It has been pointed out by Murnaghan (1937) that for a material in
which the stress is zero in the undeformed state, [dW/dJ, ], = 0, a result which may readily
be obtained by considering the expansion of (6-14) in powers of ¢. Also, by considering the
first approximation terms in the stress-strain relations, it has been shown by Rivlin (1953)
that the Lamé constants A and x of the classical theory of elasticity are given by

ow 2w ow
/1:4{[57; O+ 7.]7 0}, ﬂ:—QI:?TZ O. (8‘5)

The Lamé constant A in (8:5) is not used again so it need not be confused with A used
elsewhere in the paper.

By analogy with §7 we may express ¢ in the form (7-5) where °H now has the value
—4ho[0W]0J,], so that, from (5-19) we again have H = °H when ¢ = 0. Introducing (7-1),
(7-2), (7-5) and (8-1) to (8-4) into (6-13) and (6-14) and equating the coefficients of ¢ in the
resulting equations to zero we obtain

92(%) 9 °D
022 Tz~

‘9;((;@ (201—}—1)( o )—|—2(cl—|—1)°/l—0

3D 9°D
1) (55 +a =0,

(r=1,2,3), (84)

~o, W

v

(8-6)

and similarly from the coefficients of ¢ we have

92(1 3D 99D d D d°D
a(zf)Jr 0z oz {( —Cy) 5 a2 (201—202—1)W+2(cl——cz—cs+l)"/l}, (8:7a)

37-2
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02 1D d'D
a(a@“ 1+1>( +52) 20 +1) 1
29D 99D d9Dd D d°Do oD
e 20, 1) (T 1 2] ) P (b dea ) T2 T

_D 0
+an+%+m9%@a iga+@ﬁ4%+%ﬁdﬂ%ﬁzo, (8-74)

1 0 0
2(¢c,+1) (aaD—{—aaD)—l—ch N+ (26, +5¢y+c5+2¢,+2) (0 D (96217)

Dd°D 0 0
—2(c, —I—l)a&Z 83_ +2(3¢;—2¢,— 263+3)03_D1?3227

+4(20,+ )(‘98D+‘98_E)OA+(¢1+2¢4) Q)2=0,  (870)

where we have written

[321/1/'] /[aw [aW]/ aW] )
9, A NNV N
W Jrow PBWT oW

[J ] / [ % 7?7?“]0/ 797;:]0:“*‘

Equations (8-6) may be solved in terms of complex potential functions €(z), o(z) to yield
%(2,2) = 2Q(2) +2Q(2) +-0(2) +8(2),

(8-8)

D(z,Z) = kQ(z) —2Q' () — &' (2), (8:9)
°Az,2) = §(k—3) {Q'(2) + Q' ()},
where K:gg;ii, K*SZ‘*%(—E%;—). (8:10)

We may observe that the constant ¢, can be expressed in terms of Poisson’s ratio 5 by the
relation ¢; = —(1—7)/(1—27) so that x = (3—7)/(14+7) and k—38 = —47/(1+7). Since,
from (8-5), the modulus of rigidity x of the material is contained in the constant °H,
equations (8-9) are equivalent to the usual formulae of the classical theory of generalized
plane stress.

Introducing the expressions (89) into (8:74), and remembering (8:10), we obtain

P00 0D 00 () +0 (B (2) + B (), (8:11)

where we have written for brevity

B, ={13¢;+6—4c,—4(c,+1) 03}/(3cl+2),}

Bl ={5¢,+2—4c,—4(c,+1) ¢cs}/ (8¢, +2).
Similarly, by eliminating A between equations (8:75) and (8:7¢) we have

(8:12)

704) (242 2)
2(;1 a (3 1‘{ 2) 0z + 0z
0 0
={3¢;,+2+(2¢,+5) c,+ (¢;+1) c3+2 4}(09D+392D)
D3 °D d°D3 oD
302 20 e 0t 1)y T2

-—2{( —4) cy+6y05—20,} ((9 —Q-I—aa_ﬁ) 0 —2(2¢,¢5—0¢,) (*A)2, (8-13)
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or, making use of (8-9), (8:10) and (8-12)
?('¢) (@'D 4D
=0 %2~ )

= Bf2Q(2) +0" ()} (2) +3(2)}— BHIQ (2) P+ [X (D))} - 2B, () Q' (2), (8:14)
where
B, = {(3¢,+2) (13¢}+16¢,+4) +4[3¢, (3¢, +4) ¢, — 3¢i(c, +1) ¢3—2¢,]}/ (3¢, +2)%, 1 (8-15)
B} = —{(8¢,+2) (19¢2+16¢, +4) —4[3¢,(3¢,4-4) ¢, — 3¢2(¢, + 1) c5—2¢,]}/ (3¢, +2)3.)
It will be observed that (8-11) and (8-14) are similar in form to the corresponding equations
(7-10) and (7-9) for an incompressible material, and an analogous procedure may therefore

be adopted to obtain expressions for d'¢/dz and 'D in terms of complex potential functions.
Thus

P92 _ N2 +2B(2) +5(2) + B (D) +

11 [y(z,2) _Blz{ﬁl(z)}za

and

1D(z,%) = kA(z) —zA'(Z) — 8 (Z) — By Q(z) ¥ (2) — =L A, (2, 2) (8-16)

1

B0V (2))2+ B, f 2ﬁ'(Z) &'(2) dz—B, f Q)P

where Bl — B, + 1B, = 816, 14— 126, + (6, +1) 651}/ (36, +2), )

By = B, —2B,/(k+1)
= {(3¢;+2) (39¢2+ 34¢, + 8) —4¢,(21¢2 4 26¢, +4)
—4eq(c;+1) (9¢2+ 14c, +4) +8¢,3/{2(2¢, +1) (3¢,+2)2}, } (8-17)

B, = %Bi—Bé
= {(8¢,+2) (53c2+48¢; 4 12) —4¢,(27¢2 4 36¢, +4)
—4cq(c;+1) (3e2+12¢,+4) +16¢,}/{2(3¢; +2)3}, )
Iy(z,2) = {Z0(2) +3" (2} 22 (2) +0'(2) — Q@) )
HO @)+ (R HAY (2) +3(2) Q)

9 29
0 0
{D(?z+ E&z} 7z

and Ay(2,2) = {2Q"(2) +3" (2)}{zCY (2) ()—Kﬁ(z)}
—{kQ(2) -z )}{ZQ'( +0'(2) —kQ(2)}

{OD +°75»~}0D

(8-18)

0z

An expression for 'A(z, Z) in terms of complex potential functions may now be obtained from
(8:7), (8-9) and (8-16). From (8-9) and (8-16) the conditions for single-valued stress
resultant and displacement components become

J

[Q(2)]c=0, [0(2)]c=0, [«X2)—@(Z)]c=0, (8-19)
[A'(2)]c =0, [8"(2)+B5Q(2) Q:’(Z)]c =0,
[eA2) ¥ (e = [ B[ (@ @) dz— B[ Q)5 () dz+ B, Q) ﬁ'(Z)]C. (8:20)

37-3
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The integral terms may, if required, be removed from the second of equations (8-:16) by

a process similar to that employed in §7. Thus, replacing A(z) by A(z) + (B4//<)fz{ﬂ’ (z)}dz

and §'(z) by 0'(z) + B f o (z) w"(z) dz we obtain

PHBE) _ Az +2B(2)+3(2) + By Q) ()

+,;%—1— Ty(2,2) — B;2{Q'(2)}2+ B, f Eﬁ’(z) @"(2) d2+% f rdz,l (821

1D(z,%) = kA(z) —zN'(2) — 8 (2) — By Q(2) Q' (2) —Kﬁll Ay(z,2) + B Q' (2)13,

where B, = B,—B,/«
= {(3¢,+2) (7¢,+2) (11¢;+ 6) —4cy(3c3—4¢; + 4)
—4c4(c,+1) (27¢2+20¢; +4) — 16¢,}/{2(5¢, +2) (3¢, +2)%, &
Bg = Bi—B,k
= {(8¢,+2) (51c2+42¢, +8) —4c¢y(9c2+6¢, +4)
—dcy(c; + 1) (216} + 18¢, +-4) —8c,3/{(5¢, +2) (3¢, +2)% )

(8-22)

The conditions (8-20) for single-valued stress resultants and displacements now, however,
reduce to B

[A'(2)]c =0, [0"(2) +B3Q(2) Q'(2)]c = 0,)

[kA(Z) ¥ (2)]o = By[Q2) ¥ ()] J

To obtain the corresponding results for complex co-ordinates ({, {) in the undeformed
body we may again assume an expansion of the form (7-20) for D, and the formulae (7-22),
(7:23) may then be applied with Ty(¢, €), Ay(¢, §) replacing T'(§, 0), A, (&, ©) respectively.
The first approximation stress and displacement functions are thus given by (8-9) with ¢, {
replacing z, Z, and for the second-order terms we have from (8-16)

(8-23)

PICD A+ Q0+ BAO DD + DTG DB U (D,
D(6,0) = £ — BB (O~ (@)~ B AO T (D) (3:24)
-~ M D+ BIE@ Oy B T Qo Q at- B, [ 1@ Opde

Alternative expressions for d'¢(z,z)/0z and 'D’({,{) may be obtained from (8-21). The
conditions for single-valued stress resultants and displacements are again given by (8:19),
(8-20) and (8-23) with {, { replacing z, Z. The stress resultants and the resultant force and
couple across a curve in the deformed body may now be obtained in terms of complex
potential functions by combining the expressions obtained for ¢ and D with (6:17), (6-19)
and (6-20).

By considering the uniform dilatation of a compressible material under a finite pressure,
Rivlin (1953) has shown that an incompressible material may be regarded as the limiting
case of a compressible material obtained by letting [02W/dJ%], and [0*W[dJ;0J,], tend to
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infinity in such a manner that their difference remains finite. Comparison of the form of
W for a compressible material with that for an incompressible material as far as the terms
of the third order of smallness then yields

aw ow
57 ] =—@+e. |57 ] = Ciec, (825)

where C}, C, are the Mooney constants defined for equation (7-4). Thus, in the results of the
present section the passage to the incompressible case may be achieved by inserting the

conditions }

€1—> 00, Cy—>00, (fca—>1,

_ C+20,

8 C+C,

For example, by introducing (8-26) into (8:16) we obtain (7-12) and (7-14), and the

alternative equations for an incompressible material may be obtained from the corre-
sponding relations for a compressible material in a similar manner.

(8-26)

= $(83—a).

PLANE STRAIN
9. APPROXIMATE THEORY FOR COMPRESSIBLE MATERIALS

In the theory of finite plane strain developed by Adkins et al. (1953), the application of
approximation methods was confined to deformations of incompressible materials. In the
present section, the corresponding results will be obtained for compressible materials prior to
a general formulation of the second-order theory of elasticity for two-dimensional problems.

Employing the notation of §2, we suppose the elastic body to be deformed by a uniform
finite extension parallel to the x;-axis with constant extension ratio A, and that sub-
sequently the body receives a finite plane strain parallel to the (x,x,) plane. Thus if we
choose the moving curvilinear co-ordinate ¢, so that f; = y; then

%3 = Ys/hg = 05/, 1
(9:1)

and Ko = xa(ﬁh 02)’ Yo = ya(ﬁla ‘92: t)-J
Comparing (9-1) with (3-1) and (5-1), we see that equations (3-2) and (8+3) again apply, and
that the analysis given in § 5 for compressible materials in plane stress may be repeated, with
appropriate modifications, in the present instance. Thus, equations (5-2) to (5-6) are now

satisfied exactly, provided we replace A by A, throughout. Also, from (5:6), (2:5), (5:15)
and (5-16) we obtain

- w ., ow ., OW geh 12 NZA 5 u
JI{0J+(’1°_ )57~ W )aJ} e {J+@ l)aJ}“
ow ow aw
33 2 2 2 )2
r ﬂ{a W (T 1 A)M (L= 23) (T 41 /I)+J+Js]w}
The stress components may be expressed in terms of an Airy stress function ¢ by relations
analogous to (4-5) and (4-6) so that we may write

¢ “aﬂ = eayeﬂpTYP = (A/d) (Oeac"y) (Oeﬂp) 7-‘}',0, (9'3)

and the relations (4-8) to (4-12) may also be employed if F and M now denote the force and

couple respectively across the arc 4P of the plane y; = 0 in the deformed body, measured
per unit length of the y,-axis.

78 =
(9-2)
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The complex co-ordinate systems ({, {) and (z,z) may now be defined as in §6 and it is
at once evident that the relations (6-1) to (6-9) and (6-18) to (6-21) are again satisfied, with
A replaced throughout by 4,. Moreover the equations of equilibrium may be expressed in
forms analogous to (6-13). Thus we have

= rw-a - -0 32 (2-),

2= ARG e b El v
B LW (o, W, («/13 ) ,
0za‘z‘“I;{a_J{+(70‘+’1°—2)57;+(’1° AVt an} [ (9-4)
2JLOW | .y AW ., dW|0DID
I gy 2 G -1 7| 3 %

and these equations are sufficient for the determination of ¢, D and D. In applying approxi-
mation methods we shall confine our attention to plane strain for which 4, = 1, and
equations (9-4) then reduce to

ow aW)aD(i;D_ ),
z

@ZQJ(I)(___ e
92 ) \oa ~a7,) 9z
¢ oW ow

gza5 = 3 H W=D G20 (=50

We now suppose the stress and displacement functions ¢ and D to be expanded in the
forms (7-5) and (7-1), and we shall choose the constant °H to have the value —2[dW/dJ,],.
From (8:25) wesee that this choice is consistent with the value 2(C, 4 C,) employed by Adkins
et al. in dealing with incompressible materials. From (6-9), with A = 1, itis readily seen that
J; = 0 and that the strain invariants J; and J, may be expanded in the forms (8-1), but now

(9-5)

ow 3W) 0D dD
0z dz°

we have o~
d°D 4°D \
Olez{az+az}’
d'D 9D (°D\2 (3°D\2 9°DI°D  _3°Da3°D
1 = .
Jl_2{3z+6z (az) (az) iz % T3z az}” (9-6)
d°D 9°D\2 4°DJ D
l == JR—
Jr(aﬁaz) Y% 0 |

Also, (8-3) and (8-4) again apply with A = 1. The relations for the determination of %, !¢,
9D and D may be obtained by a procedure analogous to that employed in §§7 and 8. This

process yields 2(0
22(%) 9 °D _o,
022 0z )
232(0¢) + (2¢, + 1) (_a,_O_D_+@) =0 (9.7
7zoz T (20 iz "z )T
and 2(1¢) 9D 3D 3 °D d °D
8(z?) T T {2(61—62) Gz TEa—2-1) —52_}’
92(1 91D 91D 90D 9 °D\?
2 Bz(aé)+(2€1+l)( 9z +F)+(2"1+36‘2+2C4+1) (”‘3’;_‘_—5{) (9.8)
d°D 3D d°D9°D
—(2¢,+1) 7;7?+(6€1A462”1) 0z 0z 0.
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We may observe that these relations could have been obtained directly from the corre-
sponding equations of (8:6) and (8:7) by putting 4, = A; = 0. Moreover, since ¢, is absent
from (9-8), we may infer from (8:25) that the stress and displacement functions for an
incompressible material can only involve C; and C, in the form (C;+-C,), a result obtained
independently by Adkins et al.

Expressions for the stress and displacement functions in terms of the complex potential
functions Q(z), w(z), A(z) and §(z) may be obtained from (9-7) and (9-8) by a process similar
to that employed for the corresponding equations in §§ 7 and 8. Thus from (9-7) we have

°(z,2) = 2Q(z) +2Q(2) +0(2) +8(2),

_ i (9-9)
°D(z,2) = kQ(z) 2 (2)—3'(2), |
where K= Zzlli = 3—4. (9-10)
1

This definition of « is commonly used in the classical infinitesimal theory of plane strain.
By combining (9-9) with (9-8) we may express the equations for the determination of !¢ and
1D in the forms (8-11) and (8-14), in which x now has the value (9-10), and the other
constants are given by

B, = (6c,—4¢c,—1)/(2¢,+1),

B = (20, —4c,—1)/(2¢,+1),

By = {(26,+1) (4¢f —3) —4(3¢,+2¢,)}/ (26, +1)°,

By=—{(2c;+1) (4c}+3) +4(3c,+2c,)}/ (26, +1)°.
The solution may then be completed as in §8 and the formulae there derived for the stress
and displacement functions, from (8:16) onwards, now apply, provided we employ (9-10)

and (9-11) to evaluate the remaining constants. Thus in (8-16), (8-19) to (8-21), (8:23) and
(8-24) we now have

B} = (14¢,—12¢,—3) /{2(2¢,+1)},

By = {(2¢,41) (8¢2—2¢,+ 3) — 4cy (463 +2¢, — 3) + 8¢,}/{2¢,(2¢, + 1)},

B, = {(2¢;+1) (12c2+5) — 4¢,(4ci+4¢, —5) + 16¢,}/{2(2¢, 4 1)3}, r(9-12)

By = {(2¢,+1) (2¢,—3) (6¢;+1) — 4c,(4c} — 4, +3) — 16¢,3/{2(2¢, +1)* (26, — 1)},

Bs ={(2¢,+1) (8¢} —10¢c; — 1) —4c,y (4¢3 —2¢, + 1) — 8c,}/{(2¢,+1)% (2¢,— 1)}, )
and in (8-18) the constant « is given by (9-10).

The relations obtained by Adkins et al. (1953) for incompressible materials in plane

strain may again be derived as limiting cases of these results by introduction of the con-
ditions (8-26).

(9-11)

SECOND-ORDER THEORY FOR TWO-DIMENSIONAL PROBLEMS
10. GENERAL FORMULATION

The similarity of the results obtained in §§ 7 to 9 suggests that the second-order theory for
two-dimensional elasticity may be expressed in a more general form suitable for application
to problems either in plane stress or plane strain. This has already been achieved to some
extent for compressible materials in §§8 and 9. Thus the first two of equations (8-9), (8-11),
(8:14), (8-16), (8-18) to (8-21), (8-:23) and (8-24) apply for compressible materials in plane


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

304 J. E. ADKINS, A. E. GREEN AND G. C. NICHOLAS ON THE

stress or plane strain, provided the appropriate values are chosen for the constant coefficients.
For plane stress, these coeflicients are given by (8:10), (8:12), (8-15), (8:17) and (8-22),
while for plane strain the formulae (9-10) to (9-12) must be employed. Moreover, the
passage to the incompressible case is effected in each instance by introducing the limiting
conditions (8-26) into the formulae for the constants «, B,, B}, etc., the equations for the
determination of the stress and displacement functions remaining unchanged in form.

A further simplification may be achieved by writing equations (8:16) in the form

_1¢(?(_Z_Lf_) — A(2) +2zN'(Z) +§(2) + By Q(2) Q' (2) — B, Q0 2) 2 +-91(2, 2),

1D(2,2) — kA(z) —zA'(Z) — 8 (2) — B, Q(z) U (2) + B, {0 (2) 12 + B, f e (10

_B, f S (2)rdz—yA(z,2),

where y = B,/(x+1) and for simplicity the suffixes have been dropped from I'and A. From
(8-24) it is now evident that the formulae (10-1) may be employed to obtain expressions for
0'¢(2,2)/0z and 'D'({, {) in terms of complex co-ordinates ({, {) in the undeformed body
provided we replace z, zZ by {, { throughout, and write y = B;/(k+1). Similar formulae,
with the integral terms removed from the expression for 1D, may be derived from (8-21).
Moreover, from (7-22) and (7-23), the expressions for the first-order stress and displacement
functions take the same forms in the co-ordinate systems (z, z) and ({, ). Itfollows, therefore,
that we may employ equations (8-9) and (10-1), with the conditions (8-19) and (8:20), to
determine values for the potential functions €2, w, A and § satisfying a given set of boundary
conditions, and from the results obtained, express the stress and displacement components
in general forms which involve the constants «, y, B, B] etc. Alternatively, we may employ,
in place of (10-1), the corresponding equations derived from (8-21), in which case the
conditions (8-:20) must be replaced by (8-:23). From the general formulae thus derived, we
may, by letting the constant coeflicients take suitable values, deduce the corresponding
results for plane stress or plane strain, with the given boundary conditions satisfied on
a contour either in the deformed body or in the undeformed body. Since this procedure
may be applied both to compressible materials and to incompressible materials, the single
general solution may be made to yield, by insertion of the appropriate constants, the results
for the eight associated problems shown in the following scheme:

{plane stress } { compressible material }
plane strain) |incompressible material

{boundary conditions specified on given contours in the undeformed body}

boundary conditions specified on same contours in the deformed body
General expressions for the coeflicients «, y, B;, B}, ... may be obtained from a further

examination of the equations of §§8 and 9. For this purpose, we consider the general forms

°%(2,2) =20(2) +20(2) +0(2) +5(2),

B3 00— 0r(e) a2,

Azz) == @@+ T @),

Diz2) (10-2)
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a;(;?)jLa;?:a;zT){z(k _1) 00D+(2k 2c,—3) 00_1)—1—2(/6——62——63) )(},
220 — o) (2 + 2 2) = o g4 8) ot (B 1) eg 20 (24 2 0) o
— (@) RO D ok 70— a(p 1) 3}(?8_DﬁazD o
~2{(5— 1) e ey~ 20t (g2 + 5 2) A3y cx) (),

where we have written ¢;+1 = £ to simplify the form of subsequent expressions. From
(10-2) and (10-3) we may, by putting f = k—1 = ¢, obtain (8-9), (8:74) and (8-13) which
are appropriate to the case of plane stress, while the value f = —1 yields the corresponding
equations (9-9) and (9-8) for plane strain. By introducing (10-2) into (10-3) and comparing
the resulting equations with (8-11) and (8-14) we may thus express the constants B,, B,
B,, B, in terms of the parameter f. To evaluate the remaining constants which occur in the
expressions for the stress and displacement functions we may observe from (8:17) and

(8:22) that  pr_ B 4B, B,—B,~2B)/(x 1), B,=1B,—B,)

By = B,—B,/x, Bg= Bi—B,/«k. » J o
Remembering the definition of y we thus obtain
< = (2k-+38)/(2k+P),
By = {6k+7f—4c,—4(B+1) e}/ (2k+5),
By = {2k+3f— 40, —4(B+1) 5}/ (2K +5), p (10°5)

By = {(2k+5) [4(k+F)? — 36| + 128(38+4) ¢, — 126%(f+1) ¢;—8c,}/ (2k+ )3,
By = —{(2k+5) [4(k+5)*+ 3671 —12B(3f+ 4) ¢y + 12F%(f+ 1) c5+ 8¢}/ (2k+f)?,

Bl = {14k +176—12¢c,—12(f+1) ¢;}/{2(2k+8)},
By = {(2k+75) (8k% 4 18kF+1342) —4[4k>+ 6(k+2) f+1152] ¢,
—4(B+1) (4k2+ 6kF — %) c3+ B p[{2(k +-F) (2k+5)%, (10-6)
B, = {(2k+f) (12k2+ 24kf +175%) — 4[4k%+4(k+6) -+ 1987 c,
—4(F+1) (4k>+4kF—5%) c3-+16¢,}/{2(2k +f)%},

By = {(2k+p) (2k+58) (6k-+58) — 4[4k2+12(k—2) f—1347] c,
—4(B41) (4k2+ 12kF+1162) ¢y — 16¢,}/{2(2k+ )2 (2k+ 35)},

= {(2k+P) (8k2-+26k5-- 1762) — 4[4k2 - 2(5k —6) f—567] c,
—4(f+1) (4k% -+ 10kB+T5%) c5—8c,}[{(2k +5)* (2k+36)},

Y = {2k+3f-+ 4v(k+f) — 4oy — 4(f+1) ci} {4 (k+ )}, (10-8)

where, in (10-8), v = 0 for co-ordinates in the undeformed body and v = 1 for co-ordinates
in the deformed body. The constants for the incompressible case may be determined from
(10-5) to (10-8) in any particular instance by proceeding to the limit, using (8:26), after the
appropriate values of £ and v have been inserted.

(10-7)
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The contribution of one author (G.C.N.) to this paper was made while holding a
scholarship awarded by the British Rubber Producers’ Research Association.

Note added in proof (14 October 1954). The conditions (8-20) are simplified if, remember-
ing (8-9), we replace B;Q(z)Q'(Z) by B,Q'(2){°D(z,2z) +zQ'(z) +& (2)}/x and §'(Z) by
8 (Z) — (By/k) Q' (2) @' (Z). The terms B,Q(z) Q'(z) —B,z{Q'(Z)}? and

—B3Q(2) Q' (2) + B{z{Q' (2))?
in the first and second equations of (8:16) are then replaced by
(By/x) QY (2) °D(z,2) + B3 z{Q ()}
and — (By/x) Q' (Z) °D(z,z) — B3 z{Q' (z))2
respectively, where B; = B, /k — B, and B; = B, /k— B}. The conditions (8:20) then reduce to
[A'(2)]c=0, ["(Z)]c=0,

[fA(2) =0 (@)le= [ B[ Q@i B[ Q@7 iz .

A similar remark applies to (7-12), (7-14), (7-18), (7-24), (7-25), (8-21), (10-1) and the
associated conditions for single-valuedness.
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